$V = 336.98 \text{ A}^3$ Z = 1 $D_x = 8.942 \text{ Mg m}^{-3}$	Powder Orange
Data collection	
Flat cone powder diffrac- tometer with a multi- counter detector system Absorption correction: none	32 groups of reflections with $l > 2\sigma(l)$ measured $\theta_{max} = 35.58^{\circ}$ $h = 0 \rightarrow 7$ $k = 0 \rightarrow 7$ $l = 0 \rightarrow 5$
Refinement	
Refinement on I	9 parameters

	y parameters		
$R_l = 0.043$ where	Scattering lengths from		
$R_l = \sum I_o - I_c / \sum I_o$	Sears (1992)		
32 groups of reflections			

Table 3. Fractional atomic coordinates and isotropic displacement parameters ($Å^2$) for (II)

	Occupancy	Wyckoff position	x	у	z	B _{iso}
Bi,T	i 1.0	8(g)	0	0.254 (3)	0.234 (3)	1.9 (2)
01	0.96	8(f)	0.300 (4)	x	0	3.1 (3)
O2	1.0	4(d)	0	1/2	0.380 (7)	2.3 (5)
O3	0.16	2(<i>a</i>)	0	0	0	0 (4)
O4	0.08	2(<i>b</i>)	0	0	1/2	5 (21)

Table 4. Selected geometric parameters (Å) for (II)

Bi.Ti—Ol	2.20 (3)	Bi.Ti—O2	2.76 (4)
Bi,Ti—O1	2.69 (3)	Bi,Ti—O3	2.37 (2)
Bi,Ti—O2	2.07 (3)	Bi,Ti—O4	2.47 (2)

Weight losses of slowly cooled samples were less than 0.2%. Determination of active oxygen (Cornwell, 1971) showed that no oxidation of bismuth had occurred. Therefore, any significant change of composition during the heating procedure can be excluded. All subsequent investigations were performed with homogeneous samples only. Neither their X-ray nor their neutron powder patterns showed reflections of other phases.

The crystal data were determined using a Siemens D5000 powder diffractometer with secondary monochromator, Cu $K\alpha_1$ radiation, $\lambda = 1.54056$ Å. The patterns were registered using a step scan (10 s per step) and corrected by leastsquares calculations for zero-point shift using the program *XRAYPOWD* (Martin, 1991). The diffractometer was calibrated using silicon as external standard. The neutron diffraction data were collected at the BER II reactor at the Berlin Neutron Scattering Center (BENSC) of the Hahn-Meitner-Institut, Berlin, Germany.

Occupancy factors, connected appropriately by constraints according to the sample composition, were varied stepwise. The refinement of the structural and displacement parameters on groups of overlapping reflections was performed with our own trial-and-error program (*TRITM*; unpublished), which has been used successfully for evaluating powder data before (*e.g.* Trömel, Maetz & Müllner, 1977; von Beckh, Zegreanu & Trömel, 1981).

Lists of neutron diffraction intensities have been deposited with the IUCr (Reference: JZ1066). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

Alig, H. & Trömel, M. (1992). Z. Kristallogr. 201, 213-222.

- Aurivillius, B. & Malmros, G. (1972). K. Tek. Högsk. Handl. (Stockholm), 291, 544-562.
- Beckh, G. von, Zegreanu, P. & Trömel, M. (1981). J. Solid State Chem. 38, 173-180.
- Blower, S. K. & Greaves, C. (1988). Acta Cryst. C44, 587-589.
- Burckhardt, H.-G. & Trömel, M. (1983). Acta Cryst. C39, 1322–1323.
- Cornwell, J. C. (1971). Anal. Chim. Acta, 53, 325. Delicat, U. (1993). Thesis. J. W. Goethe-Universität, Frankfurt am Main, Germany.
- Ducke, J. (1993). Thesis. J. W. Goethe-Universität, Frankfurt am Main, Germany.
- Ducke, J., Delicat, U., Gruber, K., Püttner, A., Trömel, M. & Kizler, P. (1992). Hamburger Synchrotronstrahlungslabor HASYLAB, Jahresber, pp. 265–266.
- Ducke, J., Fink, L., Püttner, A., Radaev, S. F., Trömel, M. & Kizler, P. (1996). Z. Kristallogr. Suppl. In the press.
- Frank, F. C. & Kasper, J. S. (1958). Acta Cryst. 11, 184-190.
- Gattow, G. & Schröder, H. (1962). Z. Anorg. Allg. Chem. 318, 176-189.
- Levin, E. M. & Roth, R. S. (1964). J. Res. Natl Bur. Stand. 68A, 189-195.
- Martin, L. (1991). Z. Kristallogr. Suppl. 3, 188.
- Niggli, P. (1927). Z. Kristallogr. 65, 391-415.
- Radaev, S. F., Muradyan, L. A., Kargin, Yu. F., Sarin, V. A., Rider, E. E. & Simonov, V. I. (1989). Sov. Phys. Dokl. 34, 407–409.
- Radaev, S. F., Muradyan, L. A., Sarin, V. A., Kanepit, V. N., Yudin, A. N., Marin, A. A. & Simonov, V. I. (1988). Sov. Phys. Dokl. 34, 585-587.
- Radaev, S. F., Muradyan, L. A. & Simonov, V. I. (1991). Acta Cryst. B47, 1-6.
- Radaev, S. F., Simonov, V. I., Kargin, Yu. F. & Skorikov, V. M. (1992). Eur. J. Solid State Chem. 29, 383-392.
- Radaev, S. F., Trömel, M., Kargin, Y. F., Marin, A. A., Rider, E. E. & Sarin, V. A. (1994). Acta Cryst. C50, 656-659.
- Sears, V. F. (1992). Neutron News, 3, 26-37.
- Sillén, L. G. (1937). Arkiv Kemi Min. Geol. 12A, 1-13.
- Trömel, M. (1988). Z. Kristallogr. 183, 15-26.
- Trömel, M., Maetz, J. & Müllner, M. (1977). Acta Cryst. B33, 3959-3961.

Acta Cryst. (1996). C52, 1331-1332

PdTe₂

MICHAEL A. PELL, YURI V. MIRONOV AND JAMES A. IBERS

Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113, USA. E-mail: ibers@chem.nwu.edu

(Received 18 September 1995; accepted 30 November 1995)

Abstract

The structure of palladium(IV) telluride has been determined by single-crystal X-ray methods. The structure type is $Cd(OH)_2$ -(C6). $PdTe_2$ has a layered structure with the layers stacking along the [001] direction. The Pd^{4+} cations are octahedrally coordinated. The layers are formed by the octahedra sharing edges along the [100], [010] and [110] directions. The Pd—Te bond distance is 2.693 (2) Å.

Comment

PdTe₂ has been previously characterized by powder diffraction (Thomassen, 1929; Grønvold & Røst, 1956).

Experimental

PdTe₂ was obtained in quantitative yield from the reaction of PdCl₂ with Te at 723 K in a fused silica tube.

Crystal data

 $R_{\rm int} = 0.0664$

PdTe ₂	Mo $K\alpha$ radiation
$M_r = 361.62$	$\lambda = 0.7107 \text{ Å}$
Trigonal	Cell parameters from 24
$P\overline{3}m1$	reflections
a = 4.024(3) Å	$\theta = 28 - 33^{\circ}$
c = 5.113 (4) Å	$\mu = 26.053 \text{ mm}^{-1}$
$V = 71.70(2) \text{ Å}^3$	T = 113(2) K
Z = 1	Plate
$D_x = 8.374 \text{ Mg m}^{-3}$	$0.212 \times 0.171 \times 0.012 \text{ mm}$
D_m not measured	Black
Data collection	
Picker diffractometer	$\theta_{\rm max} = 35.08^{\circ}$
θ -2 θ scans	$h = -6 \rightarrow 5$

$\theta - 2\theta$ scans	$h = -6 \rightarrow 5$
Absorption correction:	$k = -6 \rightarrow 6$
analytical	$l = -8 \rightarrow 8$
$T_{\min} = 0.131, T_{\max} =$	6 standard reflections
0.737	monitored every 100
1130 measured reflections	reflections
148 independent reflections	intensity decay: none
$P_{1} = 0.0664$	

Refinement on F^2	Extinction correction:
R(F) = 0.0262	SHELXL93 (Sheldrick,
$vR(F^2) = 0.0648$	1993)
5 = 1.325	Extinction coefficient:
48 reflections	0.285 (26)
parameters	Atomic scattering factors
$v = 1/[\sigma^2(F_0^2)]$	from International Tables
$+ (0.0400F_{0}^{2})^{2}$	for Crystallography (1992,
$\Delta/\sigma)_{\rm max} < 0.001$	Vol. C, Tables 4.2.6.8 and
$\Delta \rho_{\rm max} = 5.43 \ {\rm e} \ {\rm \AA}^{-3}$	6.1.1.4)
$\Lambda_{0} = -211 \text{ e} \text{ Å}^{-3}$	

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $(Å^2)$

$$U_{\rm eq} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_i^* \mathbf{a}_i . \mathbf{a}_j$$

	x	у	z	U_{eq}
Pd1	0	Ō	0	0.0063 (3)
Tel	1/3	2/3	0.26628 (8)	0.0068 (3)

Table 2. Selected geometric parameters (Å, °)

Symmetry code: (i) x - 1, y - 1, z.

Initial cell parameters and symmetry information for PdTe₂ were determined from Weissenberg photographs taken at 298 K. Intensity data were processed (Waters & Ibers, 1977) and corrected for absorption (de Meulenaer & Tompa, 1965) on an IBM RS/6000 series computer. The earlier structure solution was refined with the use of the program SHELXL93 (Sheldrick, 1993). The final refinement included anisotropic displacement parameters and an extinction parameter. The final difference electron-density map shows no feature with a height greater than 1.7% of that of a Pd atom, the largest peak being near Tel.

Data collection: local program. Cell refinement: local program. Data reduction: local program. Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics: SHELXTL/PC (Sheldrick, 1994). Software used to prepare material for publication: SHELXTL/PC.

This research was supported by the US National Science Foundation through grants DMR 91-14934 and CHE 92-24469.

Lists of structure factors, anisotropic displacement parameters and complete geometry have been deposited with the IUCr (Reference: BR1127). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Grønvold, F. & Røst, E. (1956). Acta Chem. Scand. 10, 1620-1634.
- Meulenaer, J. de & Tompa, H. (1965). Acta Cryst. 19, 1014-1018.
- Sheldrick, G. M. (1993). SHELXL93. Program for Crystal Structure Refinement. University of Göttingen, Germany.
- Sheldrick, G. M. (1994). SHELXTLIPC. Version 5.0. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Thomassen, L. (1929). Z. Phys. Chem. B2, 349-379.
- Waters, J. M. & Ibers, J. A. (1977). Inorg. Chem. 16, 3273-3277.

F

Refinement